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We are looking for a steady-state solution of an external flow
prablem originally formulated on an ynbounded domain, Gur case
is a 2D viscous compressible flow past a finite body (airfoil). We
truncate the criginal domain by introducing a finite grid around the
airfoil and integrate the Navier-Stokes equations an this grid witl
the help of a finite-volume code which involves a multigrid pseudo-
time iteralion technique for achieving a steady state. To integrate
the Navier-Stokes equations on a finite subregion of an original
domain only we supplement the numerical algerithm by special
nonlocal artificial boundary conditions formulated on an external
boundary of the finite computational domain. These artificial bound-
ary conditions are based on the difference potentials method pro-
posed by V. 5. Ryaben’kii. We compare the results provided by the
nonlocal conditions with those obtained from the standard external
conditions which are based on locally one-dimensional characteris-
tic analysts at inflow and extrapoiation at outftow. It turns out that
the nonlocal artificial boundary conditions accelerate the con-
vergence by about a factor of 3, as well as allow one to shrink
substantially the computational domain without loss of ac-
CUracy. @ 1995 Acadernic Press, Inc.

1. INTRODUCTION

Many fields of science and engineering currently use numeri-
cal algorithms to supplement experimental results or to simulate
processes that are hard to investigate experimentalty. One field
where namerical algorithms have become one of the dominant
research tools is luid dynamics with particular emphasis on
acrodynamics.

in computational fuid dypamics (CFD) one is often inter-
osted in flows exterior to bodies {e.g., airfoils). Therefore the
donrain in which we wish o solve the equations extends 1o
infinity, To numerically solve the fluid equations we construct
a grid in the domain. However, since the domain is infinite no
finte grid can be constructed. The standard procedure is to
introduce an artificial outer boundary so that the new domain
" is now finite. This has to be done in a manner that keeps the
error caused by the domain truncation to a minimom. On this
artificial outer boundary one needs to specify boundary condi-
tions so that the partial differential equations are well posed
mnd the solution obtained inside the truncated domain is close
to the corresponding fragment of the original solution. A new
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approach to the construction of artificial boundary conditions
{ABCs) for flow problems on infinite domains was proposed
in [19]. Here we will implement these conditions to some
viscous flow computations and discuss the corresponding nu-
merical resuolts,

Computalional practice typically demands that any afgorithm
of ABCs sutisfies two groups of restrictions which 10 a certain
extcut are contradiclory. On one hand, ABCs should be simple
in their numerical implementation, cheap from the viewpoint
of consuming computer resources and applicable on an artificial
boundary of irregular shape. The last property is of special
significance. Indeed, the shape of an artificial boundary is actu-
ally determined by the grid generated inside the computational
domain. Since the grid is typically fitted to the (inner) solid
boundary(ies) then its outer boundary may have a rather compli-
cated form which cannot casily be modified for the convenience
of the ABCs. All these requirements usually lead to the use of
local boundary conditions. These can be based on several ideas,
e.g., on the analysis of characteristic variables, extrapolation,
or some other related ideas (see, e.g., [15, 23] as well as the
reviews {12, 13] for more details}). On the other hand, exact
bowndary conditions, which give zero truncation, are nonlocal
{(in space for stationary problems and also in time for time-
dependent ones). This can easily be seen from the analysis of
model examples {(Laplace, Helmholiz, wave equations) [12, 13].

One of the simplest model cases is the following, Consider
the 2D Poisson eguation

() it
“—\r—-
roar ar

and assume that the right-hand side is a continucus function
with compact support, supp f{r, #) C 8, f = 0 outside the finite
set B. We want to find a solution to (1.1} which is zero at
inftnity. Such a solution exists and is unique if we require that
f o f dor = 0 (da is an area element). Actually, this solution is
represented by an area Newton potential with the density f(r, 9).

We now introduce a circular artificial boundary r = Ry enclos-
ing B. Then Eg. (1.1) is transformed into the homogeneous
Laplace equation on an unbounded exterior to the disk r = R,.
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NONLOCAI EXTERNAL CONDITIONS FOR VISCOUS FLOWS

We are going to look for the solution te (1.1} only on the finite
domain r = R,. What kind of ABCs should we impose at r =
R, to ensure that the solution found for r == R, will coincide
there with the original solution obtained on R? and truncated
to this disk?

We Fourier transform (1.1) with respect to 6. Since the
equation is homogeneous for r = R,, we obtain

dfdny KL
rdr\ dr pot '

k=01, 22, ., r= R,

1.2

ﬁk = L?;((_l’).

Since (1.2) is a second-order ODE it has two linearly indepen-
dent solutions: & = r ™ and 4, = r*. The first solution vanishes
as r — +oo, whereas the second one grows without bounds.
Since we are looking for a solution vanishing at infinity, we
have to prohibit growing maodes. Therefore, we use the follow-
ing conditions:

di K|
L4+ Dy

=0,
dr r

k=0,%1,%2, .., 4(R) = 0. (1.3)

=R,

1t is easy to show (see {20, p. 202]) that conditions (1.3) are
actually the exact ABCs. This means that an original unbounded
problem and a new problem on r = R, with conditions (1.3) are
equivalent; i.e., their solutions coincide on r = R;,. An important
feature of ABCs (1.3} is the following: an inverse Fourier trans-
form of (1.3) yields a nonlocal pseundodifferential equation for
the physical variable u(R,, 8) since (1.3) contains |£|.

The examples of nontocal boundary conditions for some flow
computations could be found in [8], where the author introduces
artificial boundary of an elliptic shape and calculates an inviscid
compressible flow past an airfoil, as well as in {10, 9} where
anaiogous boundary conditions (based on the Fourier expan-
sion) are constructed and implemented for computation of the
inviscid compressible duct flow, We refer to the reviews {12,
13] for other (not only hydrodynamic) examples and to [5--7]
for rigorous analysis of some specific (time-dependent) prob-
lems. 1t is noteworthy that the same situation also occurs for
more complicated cases (arising from physical applications).
Generally, for both stationary problems as well as for time
dependent problems: exact ABCs are nonlocal.

In parallel with the better accuracy of approximation, nonlo-
cal ABCs may also provide for stationary problems a much
more rapid convergence to steady state when one uses some
iteration procedure for computation of the solution (see below).
However, nonlocal conditions usually present difficulties in
numerical implementation, require considerable computer re-
sources and can be derived easily only for regular boundaries
(rectangular, circular, etc.). The last restriction is caused by the
techniques most commonly used to derive nonlocal ABCs.
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These techniques require either implementation of some inte-
gral transformation (Fourier, Laplace) or knowiedge of an ex-
plicit expression for the Green function {11].

To avoid the computational problems connected with nonlo-
cal conditions, one commonly uses some local approximations
to such ABCs. For example, by developing rational (e.g., Padé)
approximations to the symbols of the pseudo-differential opera-
tors (¥DOs) involved (e.g., |kl in (1.3)), see [3,5-7, 14, 17, 24].
In doing so one usually cbtains (instead of a pseudodifferential
equation) high order local differential relations at the boundary.
Using these as ABCs can cause instabilities and/or ili-posedness
of the truncated problem which presents additional difficulties
for computations. High order local ABCs can also be derived
independently, without referring to the approximation of ¥DO
symbols. Namely, an alternative approach may be based on
asymptotic expansion of the solution. Truncation of this expan-
sion to a finite series leads to a local nonreflecting boundary
condition. This approach was implemented in {1-4]. Note, that
such independently obtained local conditions can sometimes
be considered as the approximation to a nonlocal condition.

A practical conclusion which can be drawn here is that one
has to choose an optimal computational strategy for any specific
problem. Generally, the better the accuracy of the approxima-
tion to the original solution, and/or the faster the convergence
one atms to achieve, the more sophisticated are the ABCs (truly
nonlocal or higher-order local) to be developed and therefore
the greater are the computational difficulties encountered.

Int this paper we aim 10 avoid the difficnltes outlined above
and to develop such ABCs which would combine the advan-
tages of local and nonlocal ones. We no Jonger consider model
examples but real CFD problems, namely compressible viscous
flows. We construct sach nonlocal ABCs that provide a goed
approximation as well as very fast convergence and, al the
same time, are easy to use, do not require large additional
resources, and apply to the boundaries of any irregular shape.

The material below is organized as follows. In Section 2 we
briefly describe the algorithm for ABCs. Section 3 is devoted
to the numerical resuits. Finally, some conclusions and possible
generalizations are summarized in Section 4.

2. DESCRIPTION OF ALGORITHM

Our approach is essentially based on the ideas from [19].
We use the technique called the difference porentials method
{DPM) [20] to equivalently reformulate the problem from the
domain to its boundary. This technique does not require know!-
edge of either the fundamental sclution or Green’s function
and is applicable to irregular boundaries with equal facility.

We consider the plane flow of a perfect compressible viscous
gas past an airfoil. This flow is assumed to be stationary and
subsonic at infinity. Such a flow is governed by the full Navier—
Stokes equations and we use certain finite-difference technique
{see below for details) to integrate them on a C-type curvilinear
grid generated around the airfoil. Denote by I, the computa-
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FI1G. 1. Configuration of domains.

tional domain covered by this grid, I is its external boundary,
and D,, is the unbounded exterior to D;,. The geometric setup
is shown in Fig. 1.

We use the following fundamental assumption in our ap-
proach: the deviations of local flow parameters from free stream
ones are small in the far fieid, i.e., in the domain J,,. Conse-
guently, the eguations governing these perturbations can be
considered as linear. The dimensionless and linearized (arcund
the free siream background) Navier-Stokes system takes the
form

§£+%+@=0

dx dx dy
ow  ap 1 [42% 1 a9
—t =l t —|=0
dx 9x Re|3ax? 3axdy oy’]

- 2.1

., ap_ L[ 1 P ew]
dx  dy Re|3ady? 3axdy ax°]
agp_Lap v ]
_____ - Ap| =0,
axr Midx RePr Ap yMj p4

where i, v, p, p are the deviations of the Cartesian velocity
components, pressure and density, respectively, from the corre-
sponding free stream values; M, = u(¥(po/o) ' Re =
pool/ e, Pr = poc,/ K, are the Mach, Reynolds, and Prandtt
numbers, tespectively, at the free stream (parameters with sub-
script ““07’). The following scales were used for nondimension-
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alization: u, for velocity, py for density, pyuj for pressure, u}
for internal energy. To obtain (2.1) we retain only the first-
order terms with respect to deviations in the original system,
use the equation of state ¢ = (1/{y — 1))p/p to eliminate the
internal energy e, and assume that the flow direction at infinity
coincides with the x-axis. A denoies the Laplace operator.

The boundary condition at infinity is the vanishing of all the
unknown variables,

p=>0u->00-0,p—>0 asx®+y—ow (22)
which simply corresponds to the free stream limit of the solution
at infinity.

The possibility of linearization in the far field is a rather
natural assumption for external aerodynamic problems. It arises
from numerous physical and numerical experiments. The prin-
cipal guestion is how close to the body can one locate an
artificial boundary I and still provide the desired accurate solu-
tions. Computational practice is the main means of answering
this question. While analyzing some numerical resuits we show
that for different types of ABCs the admissible distance between
the body and the artificial boundary may vary greatly. The
nonlocal ABCs based on the linearization and application of
the DPM [20] permit placing an artificial boundary closer to
the airfoil than extrapolation conditions do (see below).

We will develop ABCs directly for the finite-difference case.
First, introduce an auxiliary domain D} = (0, X) X (=¥/2,
¥/2) of rectangular shape folly containing Dy, (see Fig. 1). We
soive on DY the difference auxtliary problem (AP) for the
inhomogeneous version of (2.1). The right-hand side f(x, y) for
this problem will be specified later. It is a function with compact
support, supp f(x, ¥) is concentrated near I'. Consider a uniform
grid in each Cartesian direction inside D} (with mesh sizes /i,
and h,, respectively) and construct a second-order finite-differ-
ence approximation to (2.1} on this grid using central differ-
ences (of corresponding order} for the first- and second-order
derivatives,! The resulting finite-difference system is written
out expiicitly in {19], For reasons stated below (see aiso {19]
for more details) we assume periodic boundary conditions in
the y-direction,

wWe=ulyn, m=0,..,M

(2.3)
wo =y, om=0,.,M,

where 0,; = (g, Uo, Pos Pk, denotes the vector of unknowns
for the AP (superscript *“0"" hereafter), M + 1 and 27 + 1 are
the number of nodes of the Cartesian grid in the x and y
directions, respectively. We then introduce a certain compactly

''In principle one may use a higher order finite-difference approximation to
(2.1} when the basic algorithm used for integrating the Navier—Stokes equations
inside D,, is of higher order. In this paper, however, the basic algorithm, see
{i6, 21, 223, is second-order accurate.
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supported dght-hand side £3,, = (f9, £2, f5, fO1, (see below),
apply a discrete Fourier transform with respect to y, and for
each wavenumber k, k = —J, ..., J, get the foilowing second-
order system of ordinary difference equations (**™*” designates
Fourier variables):
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Introducing the additional variables

g — -1 = My Xom1 e = 0,
Do = Ui = Bk =0,
Pk — P~ Mol = 0, (2.5)
ﬁ?n,k - ﬁom—l‘k = e fhaery = 0,

m=1, .., M,

and designating
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we rewrite (2.4) as the system of eight first-order ordinary
difference equations,

Aﬁ’?n,k + B&egx—l,k = @%t, (2.6)

m=1, ., Mk=-J ., J

where the coefficients of 8 X 8 matrices A,, B, can be easily
obtained from (2.4}, (2.5). The explicit expressions for A, and
B, are given in [19]).

The principal point in the AP formulation consists in special
boundary conditions at the linesx = 0and x = X (ie.,. m =
0 and m = M). Namely, we impose these conditions separately
for each wavenumber & as

Siy(ve, =0, k=0,%1,%2,..,%J,

. 2D
SHkWE. =0, k=0,%1,22, ., %],
where
Sirtky= 1 (Qi— (D,
e fiy1
2.8
SHky = [ (Q— s
Ju b=t

Q, = A;'B, in (2.8), I denotes the identity matrix, and g (k),
s =1, ..., 8, are the eigenvalues of Q, (to be found numerically
in practice, e.g., using standard NAG routines).

Now we formally consider (2.6) on an infinite mesh —o <
m < . The system will be homogeneous for m < 0 and
m > M since 8%, has compact support. This homogeneous
systern has solutions increasing as m — + < as well as solutions
increasing as m — — oo, The former correspond to eigenvalues
Jas (k)] > 1 and the latter 1o {z, (k)] < 1. It is shown in [19]
that the conditions (2.7) prohibit, at m = 0, all the solutions
which do not decrease as m — — gnd at m = M, all the
solutions which infinitely grow as m — + oo, Thus, the solution
to (2.6), (2.7}, (2.8} coincides on {0, M} with the corresponding
fragment of the unigque bounded solution to (2.6) if one consid-
ers this system for —o0 < m < -+oo. Then, implementing an
inverse discrete Fourier transform we get a solution to the
difference AP. The latter is a truncation to the strip 0 = x =
X of a bounded on R? and a pertodic in y-direction solution to
the inhomogeneous discrete version of (2.1) for the same (see
{2.4)) compactly supported right-hand side.

We have to specify what kind of convergence we assume
while considering this finite-difference AP. An auxihary prob-
lem can be constructed for the continuous case. We consider
the strip Dy = {(x, ¥)I{0 =< x = X} (see Fig. 1) as an auxiliary
dormain, implement the Fourier transform along the y-axis for
(2.1), proceed to the first-order sysiern of ODEs, and impose
boundary conditions fully analogous to (2.7), (2.8) for each
wavenumber & € R. This procedure is described in [19]. The
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only appreciable difference between the continuous and discrete
cases is that the natural way of reducing (2. 1) to the first-order
system of ODEs in Fourier space actually vields the systemn of
seven eguations. In the finite-difference case we obtain the
system of eight equations which is mainly for reasons of conve-
nience. The difference between these two approaches is dis-
cussed in [[9]. We require that the solution te the continuous
AP be bounded on £, and absolutely integrable and represent-
able as a Fourier integral along y for any x which in particular
implies vanishing at any line x = const, u(x, y} > Oas y —
*co. Boundary conditions of type (2.7) guarantee that this
solution can be continued from D, to R* in such a way that it
will vanish as x — % uniformiy with respect to y € (—~ o,
+c0) [19]). Hereafter we will use the above properties {which
are slightly weaker) instead of (2.2),

We may expect that the solution of the difference AP con-
verges uniformly to the solution of the continuons AP on any
fixed finite subser (0, X) X (~V, ¥) C DY while the grid size
vanishes and the period ¥ grows. This 1s a somewhat nonstan-
dard definition of convergence. Namely, we consider the de-
creasing grid size /# and simultaneously increasing period Y.
Moreover, we no longer consider convergence on the whole
domain D$ but only on any fixed subset (0, X) X (~v, y)
containing . The reason is that we approximate a continuous
solution by the difference one and ar the same time we approxi-
mate a nonperiodic function by the periodic one. The latter is
constructed in a special way. Namely, it can be obtained by
calculating the Fourier integral which represents the nonperi-
odic function by the approximate quadrature formula of rectan-
gles [19). Therefore, one cannot achieve a uniform approxima-
tion of an original nonperiodic function by this periodic function
on the whole period Y but it is possible on any (fixed) smaller
interval {—¥, ¥). To provide better accuracy, ¥ must increase.
On the other hand, it is sufficient for our purposes to consider
convergence only on the subdomain (0, X) X {—¥, ¥}, since
the right-hand sides of the AP are concentrated in some neigh-
borhood of I' and the solution is of interest to us also only
“not far” from I' (see below and [19]} for more details). For
this type of convergence the residuals should be simultaneously
estimated in terms of size & and period Y. Some estimates
conpecting grid size and peried with the desired accuracy are
presented in {19]. A detailed discussion on this definition of
convergence also appears there.

We will next implement an apparatus of the DPM to obtain
the nonjocal ABCs themselves. We formulate here the main
ideas, referring to [19, 20] for further details.

The space of the difference AP solutions U¢, is determined
on the grid N = {(x,, ;) = (mh, jh, — Yi2}|m =0, .., M,
J =90, .., 2J + 1} and the space of its right-hand sides F§,,

on the grid M° = NO(x,,, y)lm = 0. M, j = 0, .., 2 + 1}.
F§ycontains all the grid functions determined on A", Designate
Dy = DY N D, and define the grid sets: M = {(x,, ¥l
(xm: )’;) = JM»O m DP'}9 Min = {(Xm'a }F)l(xma )}) E Mn N Diﬂ}-
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An operator L] of the difference AP is constructed using a 3 X
3 stencil, see above (and {197 for details). Denote such a stencil

def
with the cemter {x., y) as St,;, then N = U

St
(¥ IEM

def

No= U 8., o N 1 Ny, We call the set vy the grid

(el
boundary (by analogy to the continuous boundary I'). Evidently,
v consists of those nodes of the grid N Jocated “‘not far
from’” I'. Then introduce the operators: O y——restriction of
the grid function domain from M° 0 M, ©Y%——extension of
the grid function domain from M to M° in such a way that
the new function would be zero on MMM = M, and would
coincide with the original one on M, as well as the operators
O, and 6% acting analogously for the sets N and N'¥, re-
spectively, and define the spaces of grid functions: U,y =
{E)Jv“iylug.y & UU.':,Y}» by = {e.afg,ylfg,yEFﬁ,y}- The dif-
ference operator L, : U,y — F,y acts according to the same
rule as L). Moreover, introduce the operator Gyy: Fop —» U,y
def

as follows: ¥,y € F,y, Godiy = 6,GHO4f,, where Giy is
the Green operator of the difference AP. The space of differ-
ence-clear-traces 5, (20, p. 122] consists of all the four-compo-
nent vector-functions &, determined at the nodes of grid bound-
ary vy, where the difference-clear-trace operator [20, p. 122)
Tr,: U,y — 5 simply restricts the domain of the cortesponding
function from N to y. The difference potential {20, p. 124] (see
also [19]) with density from the space of clear traces Z, is
defined by

P& =0,y — GryLlyityy, Pi:Z,— Upy, 2.9
where w,y € U,y in (2.9) is such that Tryu,y = & and is
arbitrary in the rest. It 15 shown in [20, p. 125] that the potential
P&, depends only on & and not on the choice of u;y in the
formula (2.9). Therefore we can choose w,y € Uy, Tryu,y =
&. in (2.9) in such a way that it is zero everywhere, except for
some neighborhood of the set vy, or even simply everywhere
except for . Since the operator L, acts according 1o local
formulae the function Lyu,y € Fy (which is the right-hand
side for AP) will also differ from zero only in some small
neighborhood of y. Therefore, we can really consider the differ-
ence AP only for the compactly supported right-hand sides.
Euvidenily, the potential Py satisfies boundary conditions (2.7)
of the difference AP and it is a solution to the homogeneous
equation Ly, = 0.

Further, intreduce the difference boundary projection [20, p.

1251 P:E, - 5, P, = Tr,Py. The following proposition

holds for P, (see [20, p. 126]): the equality
L -PE&E=0 (2.10)
is valid for those and only those £ € 2, which are the trace

& = Tryu,y of some solution v,y € U,y of the homogeneous
equation L,y = 0. When (2.10} is valid the solution u,y €
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U,y of the equation Lyu,, = 0 with trace &, Trym, = &,
is unique and can be computed by means of the generalized
difference Green formula (20, p. 125]

uy = Py, (2.11)

To construct the ABCs we need to complete the system of
difference eqnations (on a C-grid) in D, Therefore, we have
to relate the values of the solution at the inner (penultimate)
and outermost rows of the grid nodes. Assume that the inner
row corresponds to the curve I" and contains the nodes v, and
the outermost row consists of the nodes w belonging to the
curve I'; (see Fig. 1). We know all the flow parameters u, at
v and we have io prescribe them at » using the representation
of the solution outside I" in the form of the potential (2.9).
Indeed, this potential is a solution of the discrete counterpart
to (2.1) (see above) in D.,,. Moreover, because of conditions
(2.3), (2.7) the far-field behavior of the potenial (2.9) tends to
the far-field behavior of the solution to the continuous AP (see
definition above) while the grid size vanishes and the period
simultaneously grows (provided that convergence takes place).

The following procedure is implemenied to obtain the nonlo-
cal ABCs relating u, and u, . First, introduce the space E of
continuous clear traces. This space consists of the eight-compo-
nent vector functions defined on I', The functions £ € = contain
the unknowns («, v, p, p) and their normal derivatives on the
curve I'. All the constructions of potentials and projections {see
above) including the analogue of {2.10) can be developed in
the continuous case using the space = and the Green operator of
the continuous AP [19]. Now introduce some finite-dimensional
approximation to Z and destgnate it: E, 2 &, Since £ are the
vector-functions, the finite-dimensional approximation is im-
plemented componentwise. The dimensionality of =, is 8|,
where |w| corresponds to each component. In practice &, are
the eight-component vector functions defined con the discrete
finite set of points w C I'. We use spline interpolation (local
splines [20, p. 303D R: E, — E to get a continuous function
RE, approximating £ and we certainly demand the following
property: ¥e > 0 3w ((w| is sufficiently large) such that V£ &
E 3¢, € B, for which |¢€ — REf < &, where || -fr is the
norm chosen in an appropriate way [20, pp. 162-1671.

The functicns & contain (i, v, p, p) at the nodes y located
near I'. One can therefore easily compute &, from £ using Taylor
expansion. We designate the composition of spline interpolation
R and the Taylor formula as 72 S, — E. 7 is the operator of
boundary data continuation from the boundary to the domain
(i.e., from w to ).

As was already mentioned we consider all the parameters
(#, v, p, )], = u, € U, at the nodes v as known values. Now
let &, = (&0, M7, where £ = (u, v, p, p)l. and £2 =
(Guldn, dvidn, dplan, dpldn)l,. Introduce one more interpola-
tion operator R,: U, - E,, R, = &', Further, apply the

def "
operator 7: &, = 7€, = VD + gWED = gUR M, + 7D
and substitute this expression into (2.10),
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Qilly, + QEED =, (2.12)

where Q, - P,, Lis the identity operator, Q" = Q, 7R,
Q% = Q,7. Equation (2.12) with respect to £ is, generaily
speaking, overdetermined and has no solution. We define iis
generalized sofution in the sense of the least squares method
introducing some Euclidean norm | -{l, in =, for this purpose.
This norm is chosen as a discrete analogue to the Sobolev
W1 norm (see [19] for the specific formuiae) and can be written
in the form J&1F = (A,&. &), where A,: B, — E, is some
symumetric linear operator and the scalar product in =, is defined

4
in the usual way, (a, &) = ;ZIE albl, a, b € E,, where [
=1jEy

enumeraies components of vector functions a and b.
Define the generalized solution of (2.12) as the solution of
the variational problem:
Q%M. + QPER: — min. (2.13)
A necessary condition for the minimum of (2.13) resulis o the
linear system
QA QYED = —~Q¥'A,Q", (2.14)
to be solved with respect to £, i.¢., with respect to the normal

derivatives of solution w at I
One can find the solution of (2.14) directly by means of

£ =K;'K,u,, (2.15)
K2 QY'AQ% K= -Q¥AQ"
and then obtain
£ =R, + 7K, 'K, u,. (2.16)

The operator K;'K, from (2.15) expresses the normal deriva-
tives £2 in terms of the functions u,. The relation (2.15) is a
consequence of (2.10), ie., of its variational version (2.13).
Therefore, &, from (2.16) satisfies (2.10) (in the variational
sense (2.13)). This implies that we continne the boundary data
4, to the domain in such a way that this continuation &, is a
clear trace of some solution to the difference version of (2.1)
{see text above Eq. (2.3)) in DY. This solution satisfies the
boundary conditions (2.3), (2.7) and can be resiored by means
of (2.11). We use it to find u, ; namely, we find the values
u, with the help of interpolation from the grid N, Designate
as i that subset of N' nodes where it 15 necessary to know the
solution w,y = Py&, in order to implement an interpolation
procedure of sufficiently high order, e.g., interpolation by qua-
dratic polynomials. Evidently, « is the grid set located near v, .
Instead of (2.11), write :
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u, = P, &, @17

def . . .
where P, = R, Py, R, is an interpolation gperator from « to

v, . Substituting (2,16) into (2.17) we get

u, =P, (7R, + 7¥K;'K,)u, = Tu,. (2.18)

The matrix relation (2.18) is the desired noniocal ABC.
Indeed, (2.18) expresses u, in terms of u,, through the solution
of the linearized Navier—Stokes equations outside I'. The far
field behavior of this solution is determined by the boundary
congditions of the AP. Therefore, (2.18) completes the system of
difference equations in I, in the correct way. While conducting
practical computations (see Section 3) we were using an itera-
tion procedure for solving the discretized Navier—Stokes equa-
tions inside [,. The ABC (2.18) was implemented at each
iteration to complement the values of the solution at the outer-
most coordinate line. Note that the implementation of the ABC
(2.18) requires the explicit computation of matrix T (as an
operator with respect to the specific basis). This necessitates
the repeated solution {8|w| times) of the difference AP. The
computer time expenditure for such a computation is not high;
its theoretical estimates are contained in [19] and practical
results are described below.

3. NUMERICAL RESULTS

In this section, we describe the results of mumerical imple-
mentation of the nonlocal ABC (2.18). We compute the steady
state of subsonic compressible viscous flow past the airfoil
NACAO0012. The computations will be carried out for various
values of the parameters My, Re, and angle of attack e

First, we introduce a curvilinear boundary-fitted grid of
C-type, which determines the shape of the computational do-
main Dy, We use a hyperbolic generator to construct the grid
around the airfoil, In all the computations described below the
basic grid has 256 nodes “‘along the airfoil surface’ and 64
nodes in the direction ‘‘normal to the airfoil surface.”” To carry
out the computations for domains Dy, of different sizes (see
below), we vary the ‘‘average radius of the computational do-
main.”” It is pecformed either by varying the “‘normal’” stretch-
ing of the grid or by means of truncating some extemal part
of it.

We use a finite-volume code {16, 21, 22] to integrate the
Navier—Stokes equations on a C-type grid inside Dj,. This
code is based on the second-order approximation to the spatial
operator and a five-stage Runge—Kutla integration in time. The
spatial approximation is constructed using a 3 X 3 stencil. The
code [16, 21, 22} involves a multigrid pseudo-time iteration
procedure for achieving a steady state. While computing we use
four levels of multigrid with regular time steps and W-cycles.

The fotlowing is an original treatment of the external bound-
ary in the code [16, 21, 22]. Boundary conditions at inflow
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(see Fig. 1) are based on the usual locally one-dimensional
characteristic analysis, and boundary conditions at outflow (see
Fig. 1) are simply the extrapolation of all the variables u, v,
p, p- The advaatages of such an approach are its algorithmic
simplicity, very low CPU time expenditure, and applicability
to domains of irregular shape, in particular, to any specific
domain D, determined by the C-grid. It trns ouvt, however,
that the accuracy and convergence rate provided by these local
conditions may be improved substantially, as will be seen from
further consideration.

To implement the ABC (2.18) we have to define the sets »
and w,. It turns out that according to the structure of the scheme
stencil (3 X 3) [16, 21, 22] one may consider the outermost
row of nodes of the C-type grid as v, and the penultimate row
of nodes as v. Boundary condition (2.18) is applied only on the
finest level of multigrid (to complete the system of difference
equations inside D, on the finest grid}; on the coarser levels we
simply retain the boundary values provided from the finest one.

To compute the operator T from (2.18) we have to specify
the period ¥ (see Eq. (2.3) and the text above it). The units for
measuring the value of ¥ will be ““diameters’” of the computa-
tional domain rather than the airfoil chords. Tt turns out that
this way of measuring ¥ is more convenient from a practical
viewpoint. For each specific flow regime as well as for each
specific grid (C-type) we will try to use a few different operators
T corresponding to different values of ¥. We will investigate
what influence the change of Y exerts on a final solution and
on the properties of numerical algorithm.

We consider two well-known flow regimes past a
NACAQ012 airfoil: My = 0.63, o = 2° which is a purely
subsonic (subcritical) flow, and M, = 0.85, o = 1° which is
a transonic (supercritical) flow with finite supersonic regions
located near the airfoil surface. In the inviscid case both these
regimes were studied numericaily by many authors, We will
investigate the viscous case for several low values of Reyn-
olds number.

3.1. Subcritical Regime

Our first computational example is the subcritical flow
M, = 0.63, a = 2° past a NACA0012 airfoil for low Reynolds
number Re = 4060. We use a basic C-type grid of 256 X 64
nodes with an “‘average radins of computational domain™ of
about 15 chords of airfeil. Figure 2 represents convergence
dynamics (i.e., dependence of the p-residual in the L..-norm on
the number of iterations) for this computation.

We compare the convergence rate of the multigrid iteration
procedure for standard (extrapolation) conditions and for the
nonlocal ABC (2.18) when the period Y is equal to six **diame-
ters.”” One can casily observe that the number of iterations
required to reduce an initial residual by a prescribed factor is
more than 3 times smaller for the nonlocal ABCs than for
extrapolation. This means that the ‘“‘theoretical convergence
rate”’ is actually more than 3 times faster for nonlocal conditions
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FIG. 2. Logarithm of p-residual in L.-norm versus rumber of iterations;
NACAQO1Z, M, = (.63, o = 2°, Re = 400, grid 256 X 64, *‘average radius”’
=15 chords.

than for standard ones. Of course, in order to understand what
the actual integral gain of CPU time is we have to take into
account the additional expenditure due to nonlocal ABCs. This
additional expenditure has two components: the cost of the
boundary operator T and the application itself of the nonlocal
condition (2.18) (i.e., matrix--vector multiplication on each iter-
ation). We shall later evaluate precisely both these components,
but first let us consider the results of the same flow computations
obtained while using smaller grids and, consequently, smaller
computational domains. Namely, we consider three C-type
(sub)grids of 224 X 48, 192 > 32, and 176 X 24 nodes,
obtained by truncating certain external parts of the basic
256 X 64 grid which was used for a computation corresponding
to Fig. 2. The “*average radit of computationai domains’’ for
these grids are approximately 5.5, 2, and 1.2 ¢hords of airfoil,
respectively. Figures 3, 4, and 5 represent convergence dynam-
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ics for these compuiations. Again we compare nonjocal and
standard (extrapolation) external boundary conditions.

In the case of the 224 X 48 grid (Fig. 3) we vse three different
operators T for ¥ = 3, 4, and 6 **diameters’’; the corresponding
curves are designated nonlocal_3, nonlocal_4, and nonlocal_6
in Fig. 3. For the 192 X 32 (Fig. 4) grid we use two different
operators T correspouding to Y = 4 and ¥ = 6. One can easily
see that in all the cases the convergence rate provided by
nonlocal ABCs is more than 3 times faster than for the standard
{extrapolation) conditions, Note, that in so doing both proce-
dures (multigrid with standard and multigrid with nonlocal
ABCs) are found to converge faster for smaller domains (see
Figs. 2, 3, 4, 5) but the relative difference in convergence rates
of these procedures for each specific variant remains approxi-
mately the same: about 3 or slightiy more. We also note that
at least for this specific regime the value of ¥ has no substantial
influence on the convergence rate. Of course, ong cannot choose
values of ¥ too small. For example, we have verified that if
Y =1{ie., one ‘“diameter’ ") then convergence fails; but starting
from the values ¥ = 2-3 (see Fig. 3 and also below) the
convergence rate remains the same for all larger values of Y.
This circumstance is very useful from a practical viewpoint
since the smaller ¥ is, the lower the cost of the corresponding
operator T [19].

Next we investigate the accuracy of these computations, i.e.,
how the resulting solution depends on the type of external
boundary condition and on the size of computational domain.
To do this we will analyze the behavior of dynamic force
coefficients, namely, lift coefficient C; and drag coefficient C,.
These coefficients are of particular interest for applications,
e.g., for aircraft design. C, and C; are calculated in the code
(16, 21, 221 by integrating the dynamic part of the momentum
flux aiong the airfoil surface nsing the trapezotd rule. Since the
integration contour is located far from the external boundary,
the calenlated values of C) and Cy are not affected explicitly
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by the type of ABC, but only through the change of solution
in the whole computational domain caused by the change of
external boundary condition. Figures 6 and 7 represent the
behavior of lift and drag coefficients, respectively, for different
types of artificial boundary conditions and for different sizes
of computational domain.

The data shown in Figs. 6 and 7 correspond to the computa-
tions (M = 0.63, Re = 400, o = 2°) described above (see
Figs. 2, 3, 4, 5). We warnt to emphasize here two facts. The
first one is very natural: the larger the computational domain, the
less the influence exerted by external conditions on a solution.
Indeed, one can see from Figs. 6 and 7 that for an “‘average
radins’’ of 15 chords the discrepancy between the force coeffi-
cients corresponding to the different types of ABCs is smail
{about 1%). On the other hand, for smaller computational do-
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FI1G. 7. Dynamic drag coefficient versus size of computational domain:
NACADDI2, M, = 0.63, v = 2°, Re = 400; basic grid, 256 X 64 with *‘average
radius’’ 15 chords, is the largest domain.

mains this discrepancy increases. It is easy to observe (espe-
cially in Fig. 6) that the force coefficients corresponding to
nontocal ABCs vacy rather slightly when the computational
domain is shrunk, whereas the coefficients provided by standard
conditions vary maore noticeably.

This is in fact the second important conclusion: nonlocal
ABCs produce a solution near the airfoil that is more stable
with respect to changes in the computational domain size. This
circumstance enables us to use smaller computational domains
whiie using nonlocal ABCs which saves computer resources
without loss of accuracy, or on the other hand, to improve
accuracy by means of grid refinement keeping the CPU time
expenditure at the same level.

Let us now consider the results of the same flow (M, = 0.63,
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FIG. 6. Dynamic lift coefficient versus size of computational domain;
NACAD012, M, = 0.63, & = 2°, Re = 400; basic grid, 256 X 64 with “‘average
radius’’ 15 chords, is the largest domain.

FIG. 8. Logarithm of presidual in L.-norm versus number of iterations;
NACA0012, M, = (.63, & = 2°, Re = 400, grid 256 X 64, *‘average radius”
==5,5 chords.
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Re = 400, @ = 2°) computation but for a smalier original
computational domain. Namely, we use the basic grid of
256 X 64 nodes with an “‘average radius’’ of about 3.5 chords
of airfoil. This grid is finer than the previous one, especially
near the airfoil surface. Figure 8 represents the convergence
dynamics for this case.

Again, one observes that the convergence for nonlocal ABCs
(for ¥ = 3, 4, and 6) is more than 3 times faster than for
standard conditions. Truncating 2 certain external part of this
basic grid we get a new one which consists of 224 X 48 nodes
withan *‘average radius’” of about two chords. The convergence
dynamics for flow computations on this truncated grid is pre-
sented in Fig. 9.

One can see the same drastic difference in convergence rates
for different types of ABCs. Moreover, it is worth mentioning
that we observe the same situation as above: for smaller meshes
both procedures (multigrid with nonlocal and multigrid with
standard ABCs) converge faster, but the relative difference in
convergence rates caused by different types of ABCs remains
approximately the same.

Now compare the values of force coefficients obtained for
different sizes of computational domain and for different types
of ABCs on this fine grid. We present these vaiues in Tabie 1.
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From Table I we see that standard boundary conditions cause
a stronger dependence of force coefficients on the size of the
computational domain, whereas only a slight dependence is
created by the nonlocal ABC (2.18) with a large period,
Y = 6 *‘diameters.”” Nonlocal ABCs corresponding to smaller
periods (¥ = 3, 4) possess intermediate properties. This behav-
tor of calculated force coefficients seems natural since, the
larger the period Y, the closer we get to the original solution
{i.e., to the solution of an original unbounded problem linearized
in the far field) [19], We again emphasize here that the period
Yis measured in “‘diameters’’ of computational domain. There-
fore, the operators Ty, Y = 3,4, 6, calculated for computational
domains of different *‘average radii’* (2 and 5.5 chords, respec-
tively) are found to be caiculated for different actual values of
Y (when measured in airfoil chords). However, our numerical
experiments show that convergence properties of an algorithm
will be similar for computational domains of different sizes if
the corresponding boundary operators T are calculated for the
same values of ¥ expressed in the domain’s ‘‘diameters.”” In-
deed, if the period Y is equal to one ‘‘diameter’” then there is
no convergence at all for any size of computationai domain.
As ¥ is enlarged, convergence appears to start from ¥ of about
two “‘diameters.”’

Note also, that the values of force coefficients obtained on
the finer grid (see Table I) slightly differ from the corresponding
values obtained on the coarser grid (see Figs. & and 7). To
clarify this difference we present Table 11 which corresponds
to the coarser grid and is analogous to Table L.

The data presented in Table 11 (see also Figs. 6, 7) are
obtained using the grid which is three times coarser near the
airfoil (in the normal direction) than the grid used for obtaining
the data presented in Table 1. This explains the discrepancy
between the corresponding values, Of course, it is natural to
assume (hat the computations on the finer grid (Table 1) are
more accurate. However, in both cases the dependence of the
solution (force coefficients) on the type of external boundary
conditions is the same—and that is one of the salient points
of this investigation.

Let us now consider gne mare suberitical flow regime caorre-
sponding to a higher but still low Reynolds nomber: M, =
0.03, @ = 2°, Re = 4000. Our computations show that this
flow turns out to be separated; a small separation zone is located
on the upper surface of the airfoil near the trailing edge. Due to

TABLE I
Grid 224 X 48, 2 ¢hords 256 X 64, 5.5 chords
Nontocal Nonlocal
ABC ¥=3 Y=4 ¥=6 Standard Y=3 Yy=4 Y=56 Standard
C 0.1079 0.1105 0.1115 0.1042 0.1136 0.1140 0.1144 0.1113
G 0.0620 0.0614 0.0609 0.0591 0.0611 0.0610 0.0609 0.0603
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TABLE II
Grid 192 > 32, 2 chords 224 % 48, 5.5 chords
NonJocal Nonlocal
ABC Y=3 Y =4 Y==6 Standard Y=3 Y=4 Y=6 Standard
(& 0.1113 0.1125 0.1140 0.1061 0.1151 0.1157 0.1162 0.1158
Cy 0.0644 0.0636 0.0631 0.0617 0.0632 0.0631 0.0629 0.0623

the influence of viscosity and flow separation the corresponding
force coefficients (see Table 111 below) differ strongly from the
values relevant to the same flow regime being treated as inviscid
(the latter have been calculated by numerous authors: ¢ =
0.3325, C; = 0.0002). To ensure that the flow separation is
not caused by a violation of conservation laws which may occur
for a difference scheme we have calculated the force coefficients
by integrating the momentum flux along different closed con-
tours enveloping the airfoil. We used contours located far
enough from the airfoii as well as those intersecting the separa-
tion zone. For all the contours we obtained close values of
coefficients (differing within the accuracy prescribed by the
grid) which gives reasons to expect that the finite-difference
scheme does not viclate the conservation laws.

For this computation we use a 256 X 64 grid corresponding
to the computational domain of an ‘‘average radius™ of 5.5
chords. The convergence dynamics is presented in Fig. 10.

We again observe that the convergence provided by nonlocal
ABCs is more than 3 times faster than the convergence provided
by standard (extrapolation) conditions. However, it is worth
mentioning that both iteration procedures (with standard and
nonlocal ABCs) converge about 1.5 times slower for the case
Re = 400 (Fig. 8} than for the case Re = 4000 (Fig. 10). This
behavior is presumably determined by the code {16, 21, 22].
The convergence rate for the nonlocal ABCs is aimost indepen-
dent of the period Y chosen for calculating the operator T (see
the curves nonlocal 2, nonlocal 3, and nonlocal -4 in Fig. 10
for ¥ = 2, 3, and 4, respectively). The corresponding force
coefficients are presented in Table II,

We see that these coefficients differ only slightly from each
other which means that (at least for this specific case) we may
restrict ourselves by using only cheap operators T {correspond-
ing to small values of ¥).

TABLE I
Nonlocal
ABC Standard Y=2 ¥Y=3 Y=4
(o 0.02509 0.02455  0.02470 0.02470
Cy 0.03129 0.03147 003144 0.03139

We now return to the question of additional CPU time expen-
diture needed for computing the nonlocal ABCs. We begin
with the last example: M, = 0.63, & = 2°, Re = 4000. Due
to the nonlocal nature of our boundary conditions their imple-
mentation results in matrix—vector muitiplication on each itera-
tion (see (2.18)) which makes each iteration about 10% more
expensive. Specifically, one iteration of the code [16, 21, 22]
on a 256 X 64 grid with four levels of multigrid and W-cycles
costs about 14.9s of CPU time on an 1IBM RISC 6000/540
workstation for standard external conditions and about 16.4 s
for nonlocal ABCs. To estimate efficiency we have to decide
what accuracy is sufficient for our purposes. Usually the solu-
tion corresponding to 1078 (p-residual in L.-norm) is already
quite satisfactory. In this case we need 4600 iterations with
standard conditions (see Fig. i) which implies about 19 h of
CPU time, and only 1500 iterations with nonlocal ABCs (see
Fig. 10) which means 6 h 49 min. While evaluating the total
time relevant to the case of nonlocal ABCs we, of course, have
to add the expenditure for calculating the boundary operator T
itself. It turns out that on the same computer the operator T
for Y = 4 costs about 120 min, for ¥ = 3—about 80 min, and
for ¥ = 2—about 52 min. We see that our integral gain for
the case ¥ = 2, i.e., that part of total CPU time which we can
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save nsing nonlocal ABCs (in comparison with standard ones)
is found to be about 60%. Indeed, the total CPU time using
nonlocal ABCs is 7.7 h (for Y = 2) compared to 19 h for the
standard boundary conditions. This is a very significant gain.

Obviously, the cost of one iteration as well as the cost of
boundary operator T does not depend on flow parameters M,
and Re. These costs actually depend only on geometric factors:
the number of nodes, the shape of artificial boundary, the value
of ¥. Therefore, the estimates of CPU time for other computed
variants will be approximately the same. For example, from
Fig. 8 (low Reynolds number Re = 400} we see that to achieve
107% accuracy one needs 7500 standard iterations and 2500
iterations with nonlocal ABCs which implies 31 hand 11 h 23
min, respectively. The last value should be increased by a cost
of T whicht is not greater than 210 min—for ¥ = 6. The integral
gain of CPU time is again around 60%. Another example refers
to smaller grids. From Fig. 9 (224 X 48 grid for low Re =
400) we conclude that cne needs 800 iterations with nonlocal
ABCs and 3000 standard iterations to achieve 107% accuracy
which is 2 h 25 min and 7 h 54 min, respectively (one iteration
costs 10.9 s for nonlocal conditions and 9.5 s for standard ones
on this grid). Adding the cost of T for ¥ = 3 (80 min) to the
“‘nonlocal’’ time (2 h 25 min) we find that we save about 53%
of the total time for this specific case. Note, that here we do
not need to use more expensive operators T. Generally, it is
more advantageous to use the nonlocal ABC (2.18) for larger
grids (i.e., for grids with a larger total number of nodes) al-
though even for smaller ones we can save more than half of
the original CPU time.

3.2. Supercritical Regime

So far we have made less effort to investigate the flow:
M, = 0.85, @ = 1°. The numerical study of such a regime for
the case of low laminar Reynolds number (Re = 4000} presents
essential difficulties because of the strong flow separation and
the existence of local supersonic zones. We will describe the
results obtained while computing this supercritical flow on two
different grids of 256 X 64 nodes with ‘‘average tadii”’ of 11
and 5.5 chords, respectively.

The convergence dynamics for the computational dotnain of
an “‘average radius'’ of 11 chords is shown in Fig. 11. Again,
nonlocal ABCs provide faster convergence. Taking into account
all the specific computational costs, it turns out that one can
save about half of the total CPU time here.

Our numerical experiments corfirm that this supercritical
case is more difficult from the point of view of convergence,
and that nomerical algorithms become more sensitive to the
method of treating the external boundary. In practice this sensi-
tivity necessitates choosing larger periods ¥ for nonlocal ABCs
and consequently more expensive operators T. For standard
conditions it turns out that for small computational domains
the convergence may simply fail. This is clearly seen from Fig.
12, where we present convergence dynamics for the computa-
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tional domain of ‘‘average radius’” of about 5.5 chords. Here the
iteration procedure with the nonlocal ABC (2.18) sull converges
rather rapidly, whereas standard conditions provide no conver-
gence at all. This implies that the nonlocal ABCs (2.18) may
exert a certain stabilizing and regularizing influence on a numer-
ical algorithm.

Now consider some flow patterns corresponding to these com-
putations. In Fig. 13 we present level lines of u-velocity in a cer-
tain (close-to-the-airfoil) subregion of an original domain. One
can eastly observe a large separation zone. This zone develops
more strongly near the upper surface than near the lower one
since the flow is not symmetric: « = 1°. Due to a rather thick
boundary layer {Re = 4000) and, in particular, its separation one
may believe that the *‘effective shape’’ of an immersed body has
now changed which in turn strongly influences the shape and
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FIG. 12, Logarithm of p-residual in L.-normn versus number of iterations;
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structure of local supersonic regions relevant to this supercritical
flow. These regions are located near both (upper and lower) sur-
faces of the airfoil; their configuration is shown in Fig. 14. Obvi-
ously, the boundary of such a region is siinply the contour
M = 1. These contours are shown in Fig, 14.

The configuration of supersonic zones differs markedly from
that one which may be obtained for the same flow being treated
as inviscid. First, both zones are much smaller than in the
inviscid case. Second, which may seem very unusual, down-
stream boundaries of the zones are not of the shock type. Indeed,
we have here a certain kind of continuous transition from super-
sonic to subsonic flow which is shown in Fig. 15; a fragment
of Mach contours near the lower surface of the airfoil.

We would like to mention that the intensity of zones is
very low. The maximal value of the Mach number inside the
supersonic regions is about M., = 1.1. This low intensity may
be the reason why the finite-difference scheme does not resolve
the very weak shock and smoothes it over, which numerically
results in the continuous transition mentioned above.

Anyway, we have obtatiied a solution of a very non-typical
structure for the case of supercritical flow past an airfoil. We
explain this unusual character of the solution by the influence
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FIG. 14. Configuration of supersonic zones for viscous flow pas
NACAO0D12, M, = 0.85, & = 1°, Re = 4000, grid 256 X 64, ‘‘average radius’’
==5.5 chords.

FIG. 15. A fragment of Mach contours near the lower surface of aifoil,
Mo = 0.95, M, = 1.09, AM = 0.0], < eorresponds to the contour M =
1.00; NACADDI2, M, = 0.85, & = 1°, Re = 4000, grid 256 X 64, ‘‘average
radius™’ =5.5 chords,

of large viscosity (low Re laminar flow}, which scems rather
natural. However, we have no reference to any experiments
conducted with the similar flow parameters. Therefore, in the
meantime we may consider this solution only as a product of
the specific numerical solver [16, 21, 22}, We note that we
have the same solution for both types of ABCs (for standard
conditions we have obtained the same result for a larger domain
when convergence fakes place), which means that the method
of treating the external boundary may influence the properties
of the numerical procedure {convergence) but it does not exert
the essential influence on the solution itself.

Moreover, it turns out that for a larger Reynolds number
(Re = 40,000) convergence fails for both types of external
boundary conditions. The iteration procedure does not blow
up. but the solution has an explicit oscillatory character while
being developed in “‘time’’ (**-’’ because of multigrid) which
presumably implies that the sieady-state solution simply does
not exist in this case.

A further increase in Reynolds number finally Jeads to mrbu-
lent flows. This case is undoubtedly the maost interesting for
practical applications. The usual modern approach to computa-
tion of turbuient flows requires certajin modeis of turbulence.
For example, the code {16, 21, 22] involves an algebraic model
(of Baldwin-Lomax type). The turbulence models are essen-
tially nonlinear and non-isotropic. They are most important for
computations in a close-to-the-body region. On the other hand,
such a sophisticated treatment is presumably not relevant to
the flow in the far field, where it is sufficient to use a concept of
““effective tarbulent viscosity®” which dates back to Boussinesq
[18]. We already have some reasonable initial results of turbu-
lent flow computations using nonlocal ABCs, and they witl be
reported in a future paper.

4. CONCLUSIONS

We developed and numerically implemented the nonlocal
ABCs for external viscous flow computations. These ABCs are
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egually easy to apply to computational domains of trregular
shape. They provide very fast convergence to a steady state (in
comparison with standard conditions) and also enable shrinkage
of the computational domain without loss of accuracy.

The nonlocal ABCs are based on the linearization of the
governing equations (full Navier-Stokes equations) in the far
fieid and then on the application of the difference potentials
method. Comparison of the results obtained while using these
conditions with those obtained from standard {extrapolation)
conditions justifies the use of far-field linearization in all the
cases under study.

When comparing the behavior of two curves {corresponding
to standard and nonlocal ABCs, respectively) on any graph
representing convergence dynarics (Figs. 2—12) one can easily
see that the standard courve has a breakpoint not far from the
beginning and at this point its slope decreases, whereas the
nonfocal curve has a constant slope almost everywhere. This
presumably means that the influence of external boundary con-
ditions reveals itself not at the very beginning of the iteration
process but after some time, i.¢., after some number of itera-
tions, since before the breakpoint the slopes of the two curves
coincide. The existence of a breakpoint on a standard curve
apparently implies that after this moment spurious reflections
from the external boundary drastically slow down the conver-
gence for standard conditions. The nonlocal ABCs have pre-
surnably far better non-reflecting properties, and the conver-
gence rate therefore remains constant (constant slope} and very
fast, which is seen from the figures.

We plan to generalize this technique for more complicated
cases, such as transonic (more careful stody}) and/or turbulent,
as well as for other geometries: ducts, nozzles, etc. Moreover,
we believe that it is possible to substantially reduce the CPU
time expenditure for computing the operator T (on the basis
of parabolized Navier—Stokes equations), which is imporiant
for practical applications.
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